Unit-2

Resonant Converters

Prof. Hardik K. Lakhani
Electrical Engineering Department
Darshan Institute of Engineering & Technology, Rajkot

hardik.lakhani@darshan.ac.in
9429050495
Unit : 2
Resonant Converters

Prof. Hardik K. Lakhani
hardik.lakhani@darshan.ac.in
• Need of resonant converters
• Classification of resonant converters
• Load resonant converters
• Resonant switch converters
• Zero-voltage switching dc-dc converters
• Zero current switching dc-dc converters
• Clamped voltage topologies
Need of Resonant Converters

- The switching devices in the converters with PWM control can be gated to synthesize the desired shape of output voltage or current.
- However, the devices are turned on and off at the load current with high di/dt value.
- The switches are subjected to a high voltage stress and the switching power loss of a device increases linearly with the switching frequency.
- The turn-on and turn-off loss could be a significant portion of the total power loss.
- The electromagnetic interference is also produced due to high di/dt and dv/dt.
- The disadvantage of PWM control can be eliminated or minimized if the switching devices are turned “on” or “off” when the voltage across device or its current become zero.
- The voltage and current are forced to pass through zero crossing by creating LC resonant circuit, thereby called a resonant converter.
ZCS (Zero Current Switching) Resonant Converter

- A **step-down** DC-DC converter
- The L-C **resonant circuit** is built around the semiconductor switch to ensure ZCS.
- The $L_1 - C_1$ are sufficiently large to **filter the harmonic** current components.
- Current I_0 can be assumed to be constant in one switching cycle.

![Resonant Converter Diagram](image)
ZCS (Zero Current Switching) Resonant Converter

Mode-1

• **Switch ‘S’ is turned on** at instant \(t=0 \), diode \(D_m \) conducts during this interval.
• Because of output of converter is constant D.C. We can redefine output circuit equals to constant current source \(I_0 \).
• Current through output circuit is constant and it is \(I_0 \).
• Energy stored in the storage components at the output side *freewheels through diode \(D_m \).*
• The inductor current \(i_L \) *rises* linearly from 0 towards \(I_0 \).
• This mode ends at time \(t = t_1 \), when inductor current reaches to constant current \(I_0 \).
ZCS (Zero Current Switching) Resonant Converter

Mode-2

- When the inductor current reaches to value I_0; the diode D_m stops conducting. By this time energy **freewheeling action gets completed**.
- Here the switch remains on and inductor current keeps on increasing.
- During this interval capacitor C comes into the operation.
- Here i_L is made up of two parts; I_0 and $I_m \sin \omega t$. Where, I_0 flows through the load. The remaining current flows through C and voltage across C gets developed.
- When current through inductor $I_0 + I_m$ maximum it **acts as short circuit** and entire voltage source appears across C and hence $v_C = V_i$.
- After reaching to the maximum, current through L decreases and **transfers its energy to C**.
- When current reduces to I_0, voltage appears across C is the addition of V_i & $V_L (=V_i)$ because both are in series.
ZCS (Zero Current Switching) Resonant Converter

Mode-3

- It starts when inductor current i_L falls to I_0.
- Capacitor got charged up to $2V_i$ by the end of mode 2.
- In this mode L continues to deliver its remaining energy. So, i_L keeps on decreasing.
- But, to maintain I_0 through load; capacitor C starts discharging & provides the constant I_0.
- This mode ends when i_L falls to 0. At this instant voltage across C is V_{C3}.

\[
\text{Mode - III, } i_L = I_0 - i_C
\]
ZCS (Zero Current Switching) Resonant Converter

Mode-4

- **In mode-3** to maintain I_0 constant, the output current is shared by i_L and i_C & at the end i_L becomes 0.
- **In mode-4**; when $i_L=0$, the switch can be turned off as the current through it becomes 0.
- During this interval output current is maintained by discharging of capacitor C.
- By the end of mode 4; C delivers its complete energy to the load.
ZCS (Zero Current Switching) Resonant Converter

Mode-5

- When capacitor voltage v_C tends to be negative, the diode D_m conducts.
- The load current flows through D_m because it comes under forward bias condition due to polarity reversal across C. I_0 free wheels through D_m in this interval.

![Diagram of L-type ZCS Converter]

Unit : 2 Resonant Converters
ZVS (Zero Voltage Switching) Resonant Converter

- As in ZCS converter, ZVS resonant converter has L, C as the resonant circuit components and L1, C1 as the filter circuit components.
- The function of resonant capacitor is to produce zero voltage across the switch S. Diode D2 provides freewheeling path to load current I0.
- As the name suggests, the switch S in ZVS resonant converter is turned on and off at zero voltage across the switch.
- Load current I0 is assumed constant and filter inductor current i0 is also taken to remain level at I0 as filter inductor is relatively large.
- Initially, (before t= 0 instant, in last mode of previous cycle operation) switch S is on and conducting I0. Therefore, iL = I0 and initial voltage across capacitor vC0=0.
ZVS (Zero Voltage Switching) Resonant Converter

Mode-1

- At \(t = 0 \), **switch S is turned off**.
- From the equivalent circuit diagram of mode I, it is seen that constant current \(I_0 \) flows through \(V_i, C \) and \(L \).
- As a result voltage across \(S \) or \(C \) builds up linearly from 0 to \(V_i \).
- Diode D2 is off.
- Also at \(t = 0 \), \(V_c = 0 \); therefore switch S is turned off at zero voltage as required.
ZVS (Zero Voltage Switching) Resonant Converter

Mode-2

• At the end of mode I, capacitor is somewhat overcharged i.e. \(v_c > V_i \), therefore diode D2 becomes forward biased.
• Now a resonant current \(i_L \) is set up in series circuit \(V_i, C, L, \) and D2. Where, \(i_L \) is given by \(i_L = I_0 \cos \omega_0 t \).
• The capacitor voltage, \(v_c \) is given by \(v_c = V_i + V_m \sin \omega_0 t \).
• It may be observed from the waveform that a ZVS resonant converter is the dual of ZCS resonant converter.
ZVS (Zero Voltage Switching) Resonant Converter

Mode-3

- At the beginning of this mode \(v_C = V_i \) and \(i_L = -I_0 \).
- In this mode capacitor voltage falls to zero from \(V_i \) that is given by \(v_C = V_i - V_m \sin \omega_0 t \) and inductor current is given by \(i_L = -I_0 \cos \omega_0 t \).
- As a result reverse bias across diode D1 vanishes and \(i_L \) begins to flow through D1.
ZVS (Zero Voltage Switching) Resonant Converter

Mode-4

- During this mode, capacitor voltage is **clamped to 0 by diode D1** conducting negative current i_L.
- As soon as anti-parallel diode begins to conduct the gate pulse is applied to switch S.
- The inductor current rises linearly from $-I_{L3}$ to zero.
- At this instant, reverse bias of D1 vanishes and already gated switch S turns on.
- This shows that S turns on at zero voltage and zero current.
- After this, current rises linearly to I_0 in the circuit formed by V_i, S, L and D2.
ZVS (Zero Voltage Switching) Resonant Converter

Mode-5

- At the end of mode 4, i_L reaches to I_0 and therefore diode **D2 turns off**.
- Switch S continues conducting I_0 as shown in fig
- **Mode 5 ends** at $t = t_5$ when switch S is turned off again at zero voltage.
- The cycle now repeats as before.
Comparison

<table>
<thead>
<tr>
<th>ZCS Resonant Converter</th>
<th>ZVS Resonant Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>The switch is required to conduct a peak current that is higher than the load current.</td>
<td>The switch is required to withstand a forward voltage that is higher than supply voltage.</td>
</tr>
<tr>
<td>It can be used for variable load application.</td>
<td>It is used for constant load application.</td>
</tr>
<tr>
<td>ZCS is used with comparatively less switching frequency.</td>
<td>ZVS is preferable over ZCS at high switching frequencies.</td>
</tr>
<tr>
<td>When the switch turns on at zero current but at a finite voltage, the charge on the internal capacitances is dissipated in the switch results into higher switching loss.</td>
<td>No such loss occurs if the switch turns on at a zero voltage.</td>
</tr>
<tr>
<td>Switching takes place when current through switch becomes zero.</td>
<td>Switching takes place when voltage across switch becomes zero.</td>
</tr>
<tr>
<td>Switching loss is eliminated during turn off operation of the switch.</td>
<td>Switching loss is eliminated during turn on operation of the switch.</td>
</tr>
</tbody>
</table>
The ZVS concept can be extended to a two-quadrant converter as shown where, the capacitors $C_+ = C_- = C/2$.

The inductance L has such a value, so that it forms a resonant circuit.

The resonant frequency is f_r, and it is much larger than the switching frequency f_s.

Assuming the filter capacitance C_e to be large, the load is replaced by a dc voltage V_{dc}.
Zero Voltage Switching - Clamped Voltage Topologies

- **Mode-1**

 - Switch S_+ is on. Assuming initial current of $I_{L0}=0$. The current linearly rises from 0.
 - This mode ends when the voltage on capacitor C_+ is zero and S_+ is turned off. The voltage on C_- is V_i.

- **Mode-2**

 - Switches S_+ and S_- both are off. This mode begins with C_+ having zero voltage and C_- having V_i.
 - The equivalent mode can be simplified to a resonant circuit of C and L with an initial inductor current I_{L1}.
 - The voltage v_0 can be approximated to fall linearly from V_i to 0. This mode ends when v_0 becomes zero and diode D_- turns on.
Zero Voltage Switching - Clamped Voltage Topologies

- **Mode-3**
- Diode D_- is turned on.
- Current i_L falls linearly from $I_{L2} (= I_{L1})$ to 0.

- **Mode-4**
- Switch S_- is turned on when i_L and v_0 becomes zero. Inductor current i_L continues to fall in the negative direction to I_{L4} until the switch voltage becomes zero and S_- is turned off.
Zero Voltage Switching - Clamped Voltage Topologies

- **Mode-5**
 - Switches S_+ and S_- both are off. This mode begins with C_- having zero voltage and C_+ having V_i, and is similar to mode 2.
 - The voltage v_0 can be approximated to rise linearly from 0 to V_i. This mode ends when v_0 tends to become more than V_i and diode D_+ turns on.

- **Mode-6**
 - Diode D_+ is turned on; i_L falls linearly from I_{L5} to zero. This mode ends when $i_L=0$. S_+ is turned on and cycle repeated.
Key Points

- For ZVS, i_L must **flow in either direction** so that a diode conducts before its switch is turned on.
- The output voltage can be **made almost square wave** by choosing the resonant frequency f_0 much larger than the switching frequency.
- The output voltage can be regulated by **frequency control**.
- The switch voltage is clamped to only V_i. However, the switches have to carry i_L, which has **high ripples and higher peak** than the load current I_0.
- The converter can be operated under a current – regulated mode to obtain the desired waveform of i_L.

![Graph showing the key points of resonant converters](image)
Class E Resonant Inverter

- Uses only **one transistor** and has **low switching losses**, yielding a high efficiency of more than 95%.
- Normally used for low power applications requiring **less than 100 W**, particularly in high-frequency electronic lamp ballasts.
- The switching device has to **withstand a high voltage**.
Class E Resonant Inverter

- **Mode-1**
- During this mode transistor Q_1 is turned on
- The switch current i_T consists of source current i_S and load current i_0.
- To obtain an almost sinusoidal output current, the value of L and C are chosen to have a high quality factor ($Q \geq 7$), and a low damping ratio.
- The switch is turned off at zero voltage. When the switch is turned off, its current is immediately diverted through capacitor C_e.

![Diagram of Class E Resonant Inverter](image)
Class E Resonant Inverter

- **Mode-2**
- During this mode transistor Q_1 is turned off. The capacitor current i_c becomes the sum of i_s and i_0. The switch voltage rises from zero to maximum value and falls to zero again.

- When the switch voltage falls to zero, $i_c = C_e \cdot \frac{dv}{dt}$ normally is negative.

- Thus, the switch voltage would tend to be negative. To limit this negative voltage, an anti-parallel diode is used.

- If the switch is MOSFET, its negative voltage is limited by its built-in diode to diode drop.
• **Mode-3**
 • This mode exists only if the switch voltage falls to zero with a finite negative slope.
 • The equivalent circuit is similar to that for mode 1 except the initial conditions.
 • The load current falls to zero at the end of mode 3.
 • However if the circuit parameters are such that the switch voltage falls to zero with a zero slope, there is no need of diode and this mode would not exist. That is $v_T = 0$ and $dv_T/dt = 0$.

![Diagram of Class E Resonant Inverter](image-url)
SLR (Series Loaded Resonant) Converter

- A half-bridge configuration of the SLR
- The series-resonant tank is formed by \(L_r \) and \(C_r \), and the current through the resonant tank circuit is full-wave rectified at the output, and feeds the output stage.
- Therefore, as the name suggests, the output load appears in series with the resonant tank.
- The filter capacitor \(C_f \) at the output is usually very large, and therefore the output voltage across the capacitor can be assumed to be a D.C. voltage without any ripple.
- The output voltage \(V_0 \), is reflected across the rectifier input as \(v_{BB'} \).
- Where, \(v_{BB'} = V_0 \) if \(i_L \) is positive and \(v_{BB'} = -V_0 \) if \(i_L \) is negative
- When \(i_L \) is positive, it flows through \(T_+ \) if it is on; otherwise it flows through the diode \(D_- \).
Similarly, when i_L is negative, it flows through T_- if it is on; otherwise it flows through the diode D_+.

In the steady-state symmetrical operation, both the active switches are operated in a complementary manner.

Depending on the ratio between the switching frequency ω_s and the converter resonant frequency ω_0, the converter has several possible operating modes.

At t_0, switch T_+ is turned on and the inductor current builds up from its zero value. The capacitor voltage builds up from its negative value $-2V_0$.

At t_1, 180° subsequent to t_0, the inductor current reverses and now must flow through D_+ since the other switch T_- is not yet turned on.
SLR (Series Loaded Resonant) Converter

- After another 180° subsequent to t_1, with a smaller peak current in this half-cycle, the current goes to zero and remains zero as no switches are on.

- A symmetrical operation requires that v_c during the discontinuous interval ($t_3 - t_2$) be negative v_{c0}, that is equal to $2V_0$.

- At t_3, the next switch T_- is turned on and next half-cycle ensues.

- Note that in this mode of operation, the switches turn off naturally at zero current and at zero voltage, since the inductor current goes through zero.

- The switches turn on at zero current but not at zero voltage.

- Also, the diodes turn on at zero current and turn off naturally at zero current.
SLR (Series Loaded Resonant) Converter

• Since the switches turn off naturally in this mode of operation, it is **possible to use thyristors** in low-switching-frequency applications.

• The disadvantage of this mode is the relatively large peak current in the circuit and, therefore, **higher conduction losses**, compared with the continuous-conduction mode.

![Diagram of SLR Converter](image)
SLR (Series Loaded Resonant) Converter

Advantages

• Transformer saturation can be avoided since the series capacitor can block the dc component.
• The light load efficiency is high because the device current and conduction loss are low.

Disadvantages

• There is difficulty in regulating the output voltage under light load and no load conditions.
• Moreover, the output dc filter capacitor has to carry high ripple current, which could be a major problem in low-output voltage and high-output current applications.
Parallel resonant converters (PRCs) have their load connected in parallel with the resonant tank capacitor C_r.

SRC behaves as a current source, whereas the PRC acts as a voltage source.

For voltage regulation, PRC requires a smaller operating frequency range than the SRC to compensate for load variation.

During steady-state operation, initially both i_L and v_C are zero and T_+ is turned on at t_0. So long as $i_L < I_0$, the output current circulates through the rectifier bridge, which appears as a short circuit across C_r and keeps its voltage at zero.

At t_1, i_L exceeds I_0 and the difference $i_L - I_0$ flows through C_r and v_C increases.

Due to LC resonance, i_L reverses at t_2 and flows through D_-, since T_- is not turned on until some time later.
PRC (Parallel Loaded Resonant Converter)

- During the interval \((t_3 - t_2)\), \(i_L\) and \(v_C\) can be calculated using \(i_{L0} = I_0\) and \(v_{C0} = 0\) as the initial conditions at time \(t_0\).
- If the gate/base drive of \(T_+\) is removed prior to \(t_3\), \(i_L\) can no longer flow after \(t_3\) and stays at zero.
- With \(i_L = 0\), \(i_0\) flows through \(C_r\) and \(v_C\) decays linearly to zero during the interval \(t_3\) to \(t_4\).
- In this discontinuous mode of operation, both \(v_C\) and \(i_L\) stay at zero for an interval that can be varied in order to control the output voltage.
- Beyond this discontinuous interval, \(T_-\) is gated on at \(t_5\) and the next half-cycle ensues with identical initial conditions of zero \(i_L\) and \(v_C\), as for the first half-cycle.
Advantages

- The PRC has the advantages that the load can be short circuited and the circuit is suitable for low-output voltage, high-output current applications.

Disadvantages

- However, the major disadvantage of the PRC is the high device current. Moreover, since the device current does not decrease with the load, the efficiency drops with a decrease in the load.
References