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8.1 Introduction to Shaft 

 A shaft is a rotating machine element which is used to transmit power from one place to another. 

The power is delivered to the shaft by some tangential force and the resultant torque (or twisting 

moment) set up within the shaft permits the power to be transferred to various machines linked up 

to the shaft. 

 In order to transfer the power from one shaft to another, the various members such as pulleys, 

gears etc., are mounted on it. These members along with the forces exerted upon them causes the 

shaft to bending. 

 In other words, we may say that a shaft is used for the transmission of torque and bending moment. 

The various members are mounted on the shaft by means of keys or splines. 

 An axle, though similar in shape to the shaft, is a stationary machine element and is used for the 

transmission of bending moment only. It simply acts as a support for some rotating body such as 

hoisting drum, a car wheel or a rope sheave. 

 A spindle is a short shaft that imparts motion either to a cutting tool (e.g. drill press spindles) or to 

a work piece (e.g. lathe spindles). 

8.1.1 Materials and Manufacturing of Shafts 

 The material used for shafts should have the following properties: 

1. It should have high strength. 

2. It should have good machinability. 

3. It should have low notch sensitivity factor. 

4. It should have good heat treatment properties. 

5. It should have high wear resistant properties. 

 The material used for ordinary shafts is carbon steel of grades 40C8, 45C8, 50C4 and 50C12. 

 Shafts are generally manufactured by hot rolling and finished to size by cold drawing or turning and 

grinding. 

 The cold rolled shafts are stronger than hot rolled shafts but with higher residual stresses. The 

residual stresses may cause distortion of the shaft when it is machined, especially when slots or 

keyways are cut. 

 Shafts of larger diameter are usually forged and turned to size in a lathe. 

8.1.2 Types of Shafts 

 The following two types of shafts are important from the subject point of view: 

1. Transmission shafts: These shafts transmit power between the source and the machines 

absorbing power. The counter shafts, line shafts, over head shafts and all factory shafts are 

transmission shafts. Since these shafts carry machine parts such as pulleys, gears etc., 

therefore they are subjected to bending in addition to twisting. 

2. Machine shafts: These shafts form an integral part of the machine itself. The crank shaft 

is an example of machine shaft. 

 The standard lengths of the shafts are 5 m, 6 m and 7 m. 

8.2 Design of Shafts 

 The shafts may be designed on the basis of 

1) Strength, 2) Rigidity and 3) Stiffness 
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8.2.1 Designing of Shafts on the Strength Basis 

 In designing shafts on the basis of strength, the following cases may be considered : 

(a). Shafts subjected to twisting moment or torque only, 

(b). Shafts subjected to bending moment only, 

(c). Shafts subjected to combined twisting and bending moments. 

8.2.1.1 Shafts Subjected to Twisting Moment Only 

 When the shaft is subjected to a twisting moment (or torque) only, then the diameter of the shaft 

may be obtained by using the torsion equation. 

 We know that 

𝑇

𝐽
=

𝜏

𝑟
 

Eq. (8.1) 

where, T = Twisting moment (or torque) acting upon the shaft, 

J = Polar moment of inertia of the shaft about the axis of rotation, 

𝜏 = Torsional shear stress, and 

r = Distance from neutral axis to the outer most fibre 

     = d / 2; where d is the diameter of the shaft. 

 We know that for round solid shaft, polar moment of inertia, 

                                                                    𝐽 =
𝜋

32
𝑑4 

 The Eq. (8.1) may now be written as 

                                                       
𝑇

𝜋
32

𝑑4
=

𝜏

𝑑
2

 

𝑇 =
𝜋

16
× 𝜏 × 𝑑3 

Eq. (8.2) 

 From this equation, we may determine the diameter of round solid shaft (d). 

 We also know that for hollow shaft, polar moment of inertia, 

                                                              𝐽 =
𝜋

32
[𝑑𝑂

4 − 𝑑𝑖
4] 

where do and di = Outside and inside diameter of the shaft, and r = do / 2. 

 Substituting these values in Eq. (8.1), we have 

                                   
𝑇

𝜋
32 [𝑑𝑂

4 − 𝑑𝑖
4]

=
𝜏

𝑑𝑂
2

 

        𝑇 =
𝜋

16
× 𝜏 [

𝑑𝑂
4 − 𝑑𝑖

4

𝑑𝑂
] 

Eq. (8.3) 

 Let k = Ratio of inside diameter and outside diameter of the shaft = di / do 

 Now the Eq. (8.3) may be written as 

                                                                  𝑇 =
𝜋

16
× 𝜏 ×

𝑑𝑂
4

𝑑𝑂
[1 − (

𝑑𝑖

𝑑𝑂
)

4

] 

               𝑇 =
𝜋

16
× 𝜏 × 𝑑𝑂

3[1 − (𝑘)4] 
Eq. (8.4) 

 From the Eq. (8.3) or Eq. (8.4), the outside and inside diameter of a hollow shaft may be determined. 
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 It may be noted that 

1. The twisting moment (T) may be obtained by using the following relation: 

We know that the power transmitted (in watts) by the shaft, 

                                                                    𝑃 =
2𝜋𝑁𝑇

60000
 

                                                                    𝑇 =
60000𝑃

2𝜋𝑁
 

        Where  T = Twisting moment in N-mm, and 

        N = Speed of the shaft in r.p.m. 

2. In case of belt drives, the twisting moment (T) is given by 

T = (T1 – T2) R 

where T1 and T2 = Tensions in the tight side and slack side of the belt respectively, and 

R = Radius of the pulley. 

8.2.1.2 Shafts Subjected to Bending Moment Only 

 When the shaft is subjected to a bending moment only, then the maximum stress (tensile or 

compressive) is given by the bending equation. 

 We know that 

𝑀

𝐼
=

𝜎𝑏

𝑦
 

Eq. (8.5) 

where, M = Bending moment, 

I = Moment of inertia of cross-sectional area of the shaft, 

σb = Bending stress, and 

y = Distance from neutral axis to the outer-most fibre   = d / 2. 

 We know that for a round solid shaft, moment of inertia, 

                                                                    𝐼 =
𝜋

64
𝑑4 

 The Eq. (8.5) may now be written as 

                                                           
𝑀

𝜋
64

𝑑4
=

𝜎𝑏

𝑑
2

 

        𝑀 =
𝜋

64
× 𝜎𝑏 × 𝑑3 

Eq. (8.6) 

 From this equation, we may determine the diameter of round solid shaft (d). 

 We also know that for hollow shaft, polar moment of inertia, 

                                                                    𝐼 =
𝜋

64
[𝑑𝑂

4 − 𝑑𝑖
4] 

where do and di = Outside and inside diameter of the shaft, and r = do / 2. 

 Substituting these values in Eq. (8.5), we have 

                                                           
𝑀

𝜋
64 [𝑑𝑂

4 − 𝑑𝑖
4]

=
𝜎𝑏

𝑑𝑂
2

 

𝑀 =
𝜋

64
× 𝜎𝑏 × [

𝑑𝑂
4 − 𝑑𝑖

4

𝑑𝑂
] 

Eq. (8.7) 

 Let k = Ratio of inside diameter and outside diameter of the shaft = d i / do 
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 Now the Eq. (8.7) may be written as 

                                                                𝑀 =
𝜋

32
× 𝜎𝑏 ×

𝑑𝑂
4

𝑑𝑂
[1 − (

𝑑𝑖

𝑑𝑂
)

4

] 

𝑀 =
𝜋

32
× 𝜎𝑏 × 𝑑𝑂

3[1 − (𝑘)4] 
Eq. (8.8) 

 From the Eq. (8.7) or Eq. (8.8), the outside and inside diameter of a hollow shaft may be determined. 

 It may be noted that the axles are used to transmit bending moment only. Thus, axles are designed 

on the basis of bending moment only. 

8.2.1.3 Shafts Subjected to Combined Twisting Moment and Bending Moment 

 When the shaft is subjected to combined twisting moment and bending moment, then the shaft 

must be designed on the basis of the two moments simultaneously. 

 Various theories have been suggested to account for the elastic failure of the materials when they 

are subjected to various types of combined stresses. 

 The following two theories are important from the subject point of view: 

1. Maximum shear stress theory or Guest's theory: It is used for ductile materials such as mild 

steel. 

2. Maximum normal stress theory or Rankine’s theory: It is used for brittle materials such as cast 

iron. 

Let  𝜏 = Shear stress induced due to twisting moment, and 

𝜎𝑏 = Bending stress (tensile or compressive) induced due to bending moment. 

1. Maximum shear stress theory or Guest's theory: According to maximum shear stress theory, 

the maximum shear stress in the shaft, 

𝜏𝑚𝑎𝑥 =
1

2
√(𝜎𝑏)2 + (𝜏)2 

 We know that 

          𝑇 =
𝜋

16
× 𝜏 × 𝑑3                        ∴ 𝜏 =

16𝑇

𝜋𝑑3
 

                    𝑀 =
𝜋

32
× 𝜎𝑏 × 𝑑3                  ∴  𝜎𝑏 =

32𝑀

𝜋𝑑3
           

 Substituting the values of 𝜎𝑏 and 𝜏 in the above equation, we have 

𝜏𝑚𝑎𝑥 =
1

2
√(

32𝑀

𝜋𝑑3
)

2

+ (
16𝑇

𝜋𝑑3
)

2

 

              𝜏𝑚𝑎𝑥 =
16

𝜋𝑑3
√(𝑀)2 + (𝑇)2 

                
𝜋𝑑3

16
× 𝜏𝑚𝑎𝑥 = √(𝑀)2 + (𝑇)2 

Eq. (8.9) 

 The expression M2 + T2 is known as equivalent twisting moment and is denoted by Te. 

 The equivalent twisting moment may be defined as that twisting moment, which when acting 

alone, produces the same shear stress (𝜏) as the actual twisting moment. 

 By limiting the maximum shear stress (𝜏𝑚𝑎𝑥) equal to the allowable shear stress (𝜏) for the 

material, the Eq. (8.9) may be written as 
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𝑇𝑒 =
𝜋𝑑3

16
× 𝜏𝑚𝑎𝑥 = √(𝑀)2 + (𝑇)2 

Eq. (8.10) 

 From this expression, diameter of the shaft (d) may be evaluated. 

2. Maximum normal stress theory or Rankine’s theory: According to maximum normal stress 

theory, the maximum normal stress in the shaft, 

                                                                       (𝜎𝑏)𝑚𝑎𝑥 =
1

2
𝜎𝑏 +

1

2
√(𝜎𝑏)2 + (𝜏)2 

   (𝜎𝑏)𝑚𝑎𝑥 =
1

2
×

32𝑀

𝜋𝑑3
+

1

2
√(

32𝑀

𝜋𝑑3
)

2

+ (
16𝑇

𝜋𝑑3
)

2

 

(𝜎𝑏)𝑚𝑎𝑥 =
32

𝜋𝑑3
+ [

1

2
(𝑀 + √(𝑀)2 + (𝑇)2)] 

 

                 
𝜋𝑑3

32
(𝜎𝑏)𝑚𝑎𝑥 = [

1

2
(𝑀 + √(𝑀)2 + (𝑇)2)] 

Eq. (8.11) 

 The expression [
1

2
(𝑀 + √(𝑀)2 + (𝑇)2)] is known as equivalent bending moment and is 

denoted by Me. 

 The equivalent bending moment may be defined as that moment which when acting alone 

produces the same tensile or compressive stress (𝜎𝑏) as the actual bending moment. 

 By limiting the maximum normal stress (𝜎𝑏)𝑚𝑎𝑥 equal to the allowable bending stress (𝜎𝑏), 

then the Eq. (8.11) may be written as 

                          𝑀𝑒 =
𝜋

32
× 𝜎𝑏 × 𝑑3 = [

1

2
(𝑀 + √(𝑀)2 + (𝑇)2)] 

Eq. (8.12) 

From this expression, diameter of the shaft (d) may be evaluated. 

 In case of a hollow shaft, the Eq. (8.10) and Eq. (8.12) may be written as 

𝑇𝑒 =
𝜋

16
× 𝜏 × 𝑑𝑂

3[1 − (𝑘)4] = √(𝑀)2 + (𝑇)2 

𝑀𝑒 =
𝜋

32
× 𝜎𝑏 × 𝑑𝑂

3[1 − (𝑘)4] = [
1

2
(𝑀 + √(𝑀)2 + (𝑇)2)] 

8.2.2 Designing of Shafts on the Rigidity Basis 

 Sometimes the shafts are to be designed on the basis of rigidity. We shall consider the following 

two types of rigidity. 

8.2.2.1 Designing of shafts on the torsional rigidity basis 

 The torsional rigidity is important in the case of camshaft of an I. C. engine where the timing 

of the valves would be affected. 

 The permissible amount of twist should not exceed 0.25° per metre length of such shafts. 

 For line shafts or transmission shafts, deflections 2.5 to 3 degree per metre length may be 

used as limiting value. 

 The widely used deflection for the shafts is limited to 1 degree in a length equal to twenty 

times the diameter of the shaft. 

 The torsional deflection may be obtained by using the torsion equation, 
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𝑇

𝐽
=

𝐺. 𝜃

𝐿
                       𝑜𝑟                  

𝑇

𝐽
=

𝐺. 𝜃

𝐿
 

where θ = Torsional deflection or angle of twist in radians, 

J = Polar moment of inertia of the cross-sectional area about the axis of rotation, 

                                 =
𝜋

32
𝑑4                      (𝐹𝑜𝑟 𝑠𝑜𝑙𝑖𝑑 𝑠ℎ𝑎𝑓𝑡) 

                                  =
𝜋

32
[(𝑑𝑂)4 − (𝑑𝑖)4]                      (𝐹𝑜𝑟 ℎ𝑜𝑙𝑙𝑜𝑤 𝑠ℎ𝑎𝑓𝑡) 

G = Modulus of rigidity for the shaft material, and 

L = Length of the shaft. 

8.2.2.2 Designing of shafts on the lateral rigidity basis 

 It is important in case of transmission shafting and shafts running at high speed, where 

small lateral deflection would cause huge out-of-balance forces. 

 The lateral rigidity is also important for maintaining proper bearing clearances and for 

correct gear teeth alignment. 

 If the shaft is of uniform cross-section, then the lateral deflection of a shaft may be obtained 

by using the deflection formulae as in Strength of Materials. 

 But when the shaft is of variable cross-section, then the lateral deflection may be determined 

from the fundamental equation for the elastic curve of a beam, i.e. 

𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸𝐼
 

8.3 Introduction to Keys 

 A key is a piece of mild steel inserted between the shaft and hub or boss of the pulley to connect 

these together in order to prevent relative motion between them.  

 It is always inserted parallel to the axis of the shaft. 

 Keys are used as temporary fastenings and are subjected to considerable crushing and shearing 

stresses. 

 A keyway is a slot or recess in a shaft and hub of the pulley to accommodate a key. 

8.4 Types of Keys 

The following types of keys are important from the subject point of view : 

1. Sunk keys, 

2. Saddle keys, 

3. Tangent keys, 

4. Round keys, and 

5. Splines. 

8.4.1 Sunk keys, 

 Sunk keys are provided half in the keyway of the shaft and half in the keyway of the hub or boss of 

the pulley. The sunk keys are of the following types: 
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8.4.1.1 Rectangular sunk key 

 

Fig.8.1 – Rectangular sunk key 

 A rectangular sunk key is shown in Fig.8.1. The usual proportions of this key are : 

Width of key, 𝑤 = 𝑑
4⁄  ; and thickness of key, 𝑡 = 2𝑤

3⁄ = 𝑑
6⁄   

where d = Diameter of the shaft or diameter of the hole in the hub. 

 The key has taper 1 in 100 on the top side only. 

8.4.1.2 Square sunk key 

 The only difference between a rectangular sunk key and a square sunk key is that its width and 

thickness are equal, i.e. 𝑤 = 𝑡 = 𝑑
4⁄ . 

8.4.1.3 Parallel sunk key 

 The parallel sunk keys may be of rectangular or square section uniform in width and thickness 

throughout. 

 It may be noted that a parallel key is a taper less and is used where the pulley, gear or other mating 

piece is required to slide along the shaft. 

8.4.1.4 Gib-head key 

 

Fig.8.2 – Gib-head key 

 It is a rectangular sunk key with a head at one end known as Gib head. 

 It is usually provided to facilitate the removal of key. A Gib head key is shown in Fig.8.9 (a) and its 

use in shown in Fig.8.9 (b). 

8.4.1.5 Feather key 

 A key attached to one member of a pair and which permits relative axial movement is known as 

feather key. 

 It is a special type of parallel key which transmits a turning moment and also permits axial 

movement. 
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 It is fastened either to the shaft or hub, the key being a sliding fit in the key way of the moving 

piece. 

 The feather key may be screwed to the shaft as shown in Fig.8.9 (a) or it may have double Gib 

heads as shown in Fig.8.9 (b). 

 The various proportions of a feather key are same as that of rectangular sunk key and Gib head 

key. 

 

Fig.8.3 – Feather key 

8.4.1.6 Woodruff key 

 

Fig.8.4 – Woodruff key 

 The woodruff key is an easily adjustable key. 

 It is a piece from a cylindrical disc having segmental cross-section in front view as shown in Fig.8.9. 

 A woodruff key is capable of tilting in a recess milled out in the shaft by a cutter having the same 

curvature as the disc from which the key is made. 

 This key is largely used in machine tool and automobile construction. 

 The main advantages of a woodruff key are as follows: 

(a). It accommodates itself to any taper in the hub or boss of the mating piece. 

(b). It is useful on tapering shaft ends. Its extra depth in the shaft prevents any tendency to turn 

over in its keyway. 

 The disadvantages are : 

(a). The depth of the keyway weakens the shaft. 

(b). It cannot be used as a feather. 

8.4.2 Saddle Keys 

 The saddle keys are of the following two types: 1. Flat saddle key and 2. Hollow saddle key. 

 A flat saddle key is a taper key which fits in a keyway in the hub and is flat on the shaft as shown 

in Fig.8.9. 

 It is likely to slip round the shaft under load. Therefore it is used for comparatively light loads. 
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 A hollow saddle key is a taper key which fits in a keyway in the hub and the bottom of the key is 

shaped to fit the curved surface of the shaft. 

 Since hollow saddle keys hold on by friction, therefore these are suitable for light loads. 

 It is usually used as a temporary fastening in fixing and setting eccentrics, cams etc. 

 

Fig.8.5 – Saddle key 

8.4.3 Tangent Keys 

 The tangent keys are fitted in pair at right angles as shown in Fig.8.9. Each key is to withstand 

torsion in one direction only. 

 These are used in large heavy duty shafts. 

 

Fig.8.6 – Tangent key 

8.4.4 Round Keys 

 

Fig.8.7 – Round keys 
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 The round keys, as shown in Fig.8.9(a), are circular in section and fit into holes drilled partly in the 

shaft and partly in the hub. 

 They have the advantage that their keyways may be drilled and reamed after the mating parts have 

been assembled. 

 Round keys are usually considered to be most appropriate for low power drives. 

 Sometimes the tapered pin, as shown in Fig.8.9 (b), is held in place by the friction between the pin 

and the reamed tapered holes. 

8.4.5 Splines 

 

Fig.8.8 – Splines 

 Sometimes, keys are made integral with the shaft which fits in the keyways broached in the hub. 

Such shafts are known as splined shafts as shown in Fig.8.9. 

 These shafts usually have four, six, ten or sixteen splines. 

 The splined shafts are relatively stronger than shafts having a single keyway. 

 The splined shafts are used when the force to be transmitted is large in proportion to the size of 

the shaft as in automobile transmission and sliding gear transmissions. 

 By using splined shafts, we obtain axial movement as well as positive drive is obtained. 

Ex. 8.1 Find the diameter of a solid steel shaft to transmit 20 kW at 200 r.p.m. The ultimate shear 

stress for the steel may be taken as 360 MPa and a factor of safety as 8. 

If a hollow shaft is to be used in place of the solid shaft, find the inside and outside diameter 

considering the ratio of inside to outside diameters as 0.5. 

Solution: Given Data: 

P = 20 kW 

N = 200 rpm 

𝜏𝑢 = 360 𝑀𝑃𝑎 

fs = 8 

𝑘 =
𝑑𝑖

𝑑𝑂
= 0.5 

To be Calculated: 

d = ? 

𝑑𝑖 =? 

𝑑𝑂 =? 

 

 The allowable shear stress, 

𝜏 =
𝜏𝑢

𝐹. 𝑆.
=

360

8
= 45 𝑁/𝑚𝑚2 

Diameter of the solid shaft 

Let d = Diameter of the solid shaft. 
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Torque transmitted by the shaft, 

                                                      𝑇 =
60 𝑃

2𝜋𝑁
=

60 × 20000

2𝜋 × 200
 

= 955 𝑁. 𝑚 = 955 × 103 𝑁. 𝑚𝑚 

Torque transmitted by the solid shaft (T), 

                      𝑇 =
𝜋

16
× 𝜏 × 𝑑3 

          955000 =
𝜋

16
× 45 × 𝑑3 

                      𝒅 = 𝟒𝟕. 𝟔 ≅  𝟓𝟎 𝒎𝒎 

Diameter of hollow shaft 

Let di = Inside diameter, and 

do = Outside diameter. 

The torque transmitted by the hollow shaft (T), 

                            𝑇 =
𝜋

16
× 𝜏 × 𝑑𝑂

3[1 − (𝑘)4] 

               955000 =
𝜋

16
× 45 × 𝑑𝑂

3[1 − (0.5)4] 

       𝒅𝑶 = 𝟒𝟖. 𝟔 ≅  𝟓𝟎 𝒎𝒎 

                          𝑘 =
𝑑𝑖

𝑑𝑂
      

   ∴  𝒅𝒊 = 𝒌. 𝒅𝑶 = 𝟎. 𝟓(𝟓𝟎) = 𝟐𝟓 𝒎𝒎 

 

Ex. 8.2 A line shaft is driven by means of a motor placed vertically below it. The pulley on the line 

shaft is 1.5 metre in diameter and has belt tensions 5.4 kN and 1.8 kN on the tight side and 

slack side of the belt respectively. Both these tensions may be assumed to be vertical. If 

the pulley be overhang from the shaft, the distance of the centre line of the pulley from the 

centre line of the bearing being 400 mm, find the diameter of the shaft. Assume maximum 

allowable shear stress of 42 MPa. 

 

 

Solution: Given Data: 

D = 1.5 m 

T1 = 5.4 kN 

T2 = 1.8 kN 

L = 400 mm 

𝜏 = 42 𝑀𝑃𝑎 

To be Calculated: 

d = ? 
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 The torque transmitted by the shaft, 

𝑇 = (𝑇1 − 𝑇2)𝑅 = (5400 − 1800)0.75 

  = 2700  𝑁. 𝑚 = 2700 × 103 𝑁. 𝑚𝑚 

Neglecting the weight of shaft, total vertical load acting on the pulley, 

      W = T1 + T2 = 5400 + 1800 = 7200 N 

   ∴  Bending moment, M = W × L = 7200 × 400  

                                        = 2880 × 103 N-mm 

Let d = Diameter of the shaft in mm 

We know that the equivalent twisting moment, 

               𝑇𝑒 = √(𝑀)2 + (𝑇)2 = √(2880 × 103)2 + (2700 × 103)2 

                                         = 3950 × 103 𝑁. 𝑚𝑚 

Equivalent twisting moment (Te), 

                      𝑇𝑒 =
𝜋

16
× 𝜏 × 𝑑3 

   3950 × 103 =
𝜋

16
× 42 × 𝑑3 

                      𝒅 = 𝟕𝟖 ≅  𝟖𝟎 𝒎𝒎 

 

Ex. 8.3 A shaft is supported by two bearings placed 1 m apart. A 600 mm diameter pulley is 

mounted at a distance of 300 mm to the right of left hand bearing and this drives a pulley 

directly below it with the help of belt having maximum tension of 2.25 kN. Another pulley 

400 mm diameter is placed 200 mm to the left of right hand bearing and is driven with the 

help of electric motor and belt, which is placed horizontally to the right. The angle of contact 

for both the pulleys is 180° and μ = 0.24. Determine the suitable diameter for a solid shaft, 

allowing working stress of 63 MPa in tension and 42 MPa in shear for the material of shaft. 

Assume that the torque on one pulley is equal to that on the other pulley. 

Solution: Given Data: 

AB = 1 m = 1000 mm;  

AC = 300 mm = 0.3 m;  

BD = 200 mm = 0.2 m;  

T1 = 2.25 kN =2250 N; 

DC = 600 mm or RC = 300 mm  

DD = 400 mm or RD = 200 mm 

Given Data: 

θ = 180° = π radian;  

μ = 0.24; 

σb = 63 MPa   

𝜏 = 42 MPa = 42 N/mm2 

To be Calculated: 

𝑑 =? 

 

 

 The space diagram of the shaft is shown in the Fig.8.9 (a). 

Let T1 = Tension in the tight side of the belt on pulley C = 2250 N (given) 

T2 = Tension in the slack side of the belt on pulley C. 

We know that, 

                     
𝑇1

𝑇2
 = 𝑒𝜇𝜃 = 𝑒(0.24×𝜋) = 2.127 

                  𝑇2 =
𝑇1

2.127
 =

2250

2.127
= 1058 𝑁 
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Fig.8.9 – Space diagram, Load diagram and B. M. diagram  of the shaft 

Vertical load acting on the shaft at C, 

WC = T1 + T2 = 2250 + 1058 = 3308 N 

Vertical load on the shaft at D = 0 

The vertical load diagram is shown in Fig.8.9 (c). 

We know that torque acting on the pulley C, 

T = (T1 – T2) RC = (2250 – 1058) 0.3 = 357.6 N-m 

The torque diagram is shown in Fig. 6.18 (b). 

Let T3 = Tension in the tight side of the belt on pulley D, and 

T4 = Tension in the slack side of the belt on pulley D. 

Since the torque on both the pulleys (i.e. C and D) is same, therefore 
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(T3 – T4) RD = T = 357.6 N-m 

(𝑇3 − 𝑇4) =
357.6

𝑅𝐷
=

357.6

0.2
= 1788 𝑁 

Eq. (8.13) 

Also,  3 1

4 2

2.127
T T

T T
   

𝑇3 = 2.127 𝑇4 Eq. (8.14) 

From Eq. (8.13) and Eq. (8.14), we find that 

T3 = 3376 N, and T4 = 1588 N 

∴  Horizontal load acting on the shaft at D, 

WD = T3 + T4 = 3376 + 1588 = 4964 N 

Also horizontal load on the shaft at C = 0 

The horizontal load diagram is shown in Fig.8.9 (d). 

Now let us find the maximum bending moment for vertical and horizontal loading. 

Considering the vertical loading at C, Let RAV and RBV be the reactions at the bearings 

A and B respectively. We know that, 

RAV + RBV = 3308 N 

Taking moments about A, 

RBV × 1 = 3308 × 0.3 or RBV = 992.4 N 

RAV = 3308 – 992.4 = 2315.6 N 

We know that B. M. at A and B, 

MAV = MBV = 0 

B. M. at C, MCV = RAV × 0.3 = 2315.6 × 0.3 = 694.7 N-m 

B. M. at D, MDV = RBV × 0.2 = 992.4 × 0.2 = 198.5 N-m 

The bending moment diagram for vertical loading is shown in Fig.8.9 (e). 

Now considering horizontal loading at D, Let RAH and RBH be the reactions at the 

bearings A and B respectively. We know that, 

RAH + RBH = 4964 N 

Taking moments about A, 

RBH × 1 = 4964 × 0.8 or RBH = 3971 N 

RAH = 4964 – 3971 = 993 N 

We know that B. M. at A and B, 

MAH = MBH = 0 

B. M. at C, MCH = RAH × 0.3 = 993 × 0.3 = 297.9 N-m 

B. M. at D, MDH = RBH × 0.2 = 3971 × 0.2 = 794.2 N-m 

The bending moment diagram for horizontal loading is shown in Fig.8.9 (f). 

Resultant B. M. at C, 
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𝑀𝐶 = √(𝑀𝐶𝑉)2 + (𝑀𝐶𝐻)2 = √(694.7)2 + (297.9)2 = 756  𝑁. 𝑚 

Resultant B. M. at D, 

𝑀𝐷 = √(𝑀𝐷𝑉)2 + (𝑀𝐷𝐻)2 = √(198.5)2 + (794.2)2 = 819.2  𝑁. 𝑚 

The resultant bending moment diagram is shown in Fig.8.9 (g). 

We see that bending moment is maximum at D. 

∴  Maximum bending moment, 

M = MD = 819.2 N-m 

Let d = Diameter of the shaft. 

We know that equivalent twisting moment, 

               𝑇𝑒 = √(𝑀)2 + (𝑇)2 = √(819.2)2 + (357.6)2 

                                    =  894 𝑁. 𝑚 = 894 × 103 𝑁. 𝑚𝑚 

We also know that equivalent twisting moment (Te), 

                      𝑇𝑒 =
𝜋

16
× 𝜏 × 𝑑3 

   894 × 103 =
𝜋

16
× 42 × 𝑑3 

                      𝒅 = 𝟒𝟕. 𝟔 𝒎𝒎 

Again we know that equivalent bending moment, 

𝑀𝑒 = [
1

2
(𝑀 + √(𝑀)2 + (𝑇)2)] =

1

2
(𝑀 + 𝑇𝑒) 

𝑀𝑒 =
1

2
(819.2 + 894) = 856.6 𝑁. 𝑚 = 856.6 × 103 𝑁. 𝑚𝑚 

We also know that equivalent bending moment (Me), 

𝑀 =
𝜋

32
× 𝜎𝑏 × 𝑑3 

856.6 × 103 =
𝜋

32
× 63 × 𝑑3 

𝒅 = 𝟓𝟏. 𝟕 𝒎𝒎 

Taking larger of the two values, we have d = 51.7 say 55 mm 

 

Ex. 8.4 Design a shaft to transmit power from an electric motor to a lathe head stock through a 

pulley by means of a belt drive. The pulley weighs 200 N and is located at 300 mm from 

the centre of the bearing. The diameter of the pulley is 200 mm and the maximum power 

transmitted is 1 kW at 120 r.p.m. The angle of lap of the belt is 180° and coefficient of 

friction between the belt and the pulley is 0.3. The shock and fatigue factors for bending 

and twisting are 1.5 and 2.0 respectively. The allowable shear stress in the shaft may be 

taken as 35 MPa. 

Solution: Given Data: 

W = 200 N;  

L = 300 mm;  

D = 200 mm or R = 100 mm;  

P = 1 kW = 1000 W;  

N = 120 r.p.m. 

Given Data: 

θ = 180° = π Radian;  

μ = 0.3;  

Km = 1.5;  

Kt = 2;  

𝜏 = 35 MPa = 35 N/mm2 

To be Calculated: 

𝑑 =? 
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We know that torque transmitted by the shaft, 

             𝑇 =
60 𝑃

2𝜋𝑁
=

60 × 1000

2𝜋 × 120
 

                                                        = 79.6 𝑁. 𝑚 = 79600 𝑁. 𝑚𝑚 

We know that torque transmitted by the shaft, 

𝑇 = (𝑇1 − 𝑇2)𝑅 

                                                    79600 = (𝑇1 − 𝑇2)100 

  (𝑇1 − 𝑇2) = 796 𝑁 
Eq. (8.15) 

We know that  

                     
𝑇1

𝑇2
 = 𝑒𝜇𝜃 = 𝑒(0.3×𝜋) = 2.57 

Eq. (8.16) 

From Eq. (8.15) and Eq. (8.16), we get, 

T1 = 1303 N, and T2 = 507 N 

We know that the total vertical load acting on the pulley, 

WT = T1 + T2 + W = 1303 + 507 + 200 = 2010 N 

Bending moment acting on the shaft, 

M = WT × L = 2010 × 300 = 603 × 103 N-mm 

We know that equivalent twisting moment, 

               𝑇𝑒 = √(𝐾𝑚 × 𝑀)2 + (𝐾𝑚 × 𝑇)2 

𝑇𝑒 = √(1.5 × 603 × 103)2 + (2 × 79.6 × 103)2 = 918 × 103  𝑁. 𝑚𝑚 

We also know that equivalent twisting moment (Te), 

                      𝑇𝑒 =
𝜋

16
× 𝜏 × 𝑑3 

      918 × 103 =
𝜋

16
× 35 × 𝑑3 

                      𝒅 = 𝟓𝟏. 𝟏 ≅ 𝟓𝟓 𝒎𝒎 

  

Ex. 8.5 A steel spindle transmits 4 kW at 800 r.p.m. The angular deflection should not exceed 0.25° 

per metre of the spindle. If the modulus of rigidity for the material of the spindle is 84 GPa, 

find the diameter of the spindle and the shear stress induced in the spindle. 

Solution: Given Data: 

P = 4 kW 

N = 800 rpm 

Given Data: 

G = 84 GPa 

θ = 0.25° 

To be Calculated: 

a) 𝑑 =? 

b) 𝜏 =? 
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θ = 0.25° = 0.25

180


  = 0.0044 Radian 

Diameter of the spindle 

The torque transmitted by the shaft, 

             𝑇 =
60 𝑃

2𝜋𝑁
=

60 × 4000

2𝜋 × 800
= 47.74 𝑁. 𝑚 = 47740 𝑁. 𝑚𝑚 

We also know that 

       
𝑇

𝐽
=

𝐺. 𝜃

𝐿
 

        𝐽 =
𝑇. 𝐿

𝐺. 𝜃
 

  
𝜋

32
× 𝑑4 =

47740 × 1000

84000 × 0.0044
= 129167 

 𝒅 = 𝟑𝟑. 𝟖𝟕 ≅ 𝟑𝟓 𝒎𝒎 

Shear stress induced in the spindle 

We know that the torque transmitted by the spindle (T), 

               𝑇 =
𝜋

16
× 𝜏 × 𝑑3 

     47740 =
𝜋

16
× 𝜏 × 353 

 𝜏 = 5.67 𝑀𝑃𝑎 

 

Ex. 8.6 Compare the weight, strength and stiffness of a hollow shaft of the same external diameter 

as that of solid shaft. The inside diameter of the hollow shaft is being half the external 

diameter. Both the shafts have the same material and length. 

Solution: Given Data: 

do = d;  

𝑑𝑖 =
𝑑𝑂

2
 

𝑘 =
𝑑𝑖

𝑑𝑂
= 0.5 

  

 Comparison of weight 

We know that weight of a hollow shaft, 

WH = Cross-sectional area × Length × Density 

                      𝑊𝐻 =
𝜋

4
[(𝑑𝑂)2 − (𝑑𝑖)2] × 𝐿𝑒𝑛𝑔𝑡ℎ × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

Eq. (8.17) 

Also weight of the solid shaft, 

𝑊𝑆 =
𝜋

4
(𝑑)2 × 𝐿𝑒𝑛𝑔𝑡ℎ × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

Eq. (8.18) 

Since both the shafts have the same material and length, therefore by dividing Eq. (8.17) 

by Eq. (8.18), we get 
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𝑊𝐻

𝑊𝑆
=

(𝑑𝑂)2 − (𝑑𝑖)2

(𝑑)2
=

(𝑑𝑂)2 − (𝑑𝑖)2

(𝑑𝑂)2
 

𝑊𝐻

𝑊𝑆
= 1 −

(𝑑𝑖)2

(𝑑𝑂)2
= 1 − 𝑘2 = 1 − (0.5)2 

𝑊𝐻

𝑊𝑆
= 0.75 

Comparison of strength 

We know that strength of the hollow shaft, 

                  𝑇𝐻 =
𝜋

16
× 𝜏 × (𝑑𝑂)3[1 − 𝑘4] 

Eq. (8.19) 

Also strength of the solid shaft, 

𝑇𝑆 =
𝜋

16
× 𝜏 × (𝑑)3 

Eq. (8.20) 

Dividing Eq. (8.19) by Eq. (8.20), we get 

𝑇𝐻

𝑇𝑆
=

(𝑑𝑂)3[1 − 𝑘4]

(𝑑)3
=

(𝑑𝑂)3[1 − 𝑘4]

(𝑑𝑂)3
= [1 − 𝑘4] 

𝑇𝐻

𝑇𝑆
= [1 − (0.5)4] = 0.9375 

Comparison of stiffness 

We know that stiffness, 

𝑆 =
𝑇

𝜃
=

𝐺. 𝐽

𝐿
 

∴  Stiffness of a hollow shaft, 

𝑆𝐻 =
𝐺

𝐿
× 𝐽𝐻 

𝑆𝐻 =
𝐺

𝐿
×

𝜋

32
[(𝑑𝑂)4 − (𝑑𝑖)4] 

Eq. (8.21) 

Also stiffness of a solid shaft, 

𝑆𝑆 =
𝐺

𝐿
× 𝐽𝑆 

                         𝑆𝑆 =
𝐺

𝐿
×

𝜋

32
(𝑑)4 

Eq. (8.22) 

Dividing Eq. (8.21) by Eq. (8.22), we get 

𝑆𝐻

𝑆𝑆
=

(𝑑𝑂)4 − (𝑑𝑖)4

(𝑑)4
=

(𝑑𝑂)4 − (𝑑𝑖)
4

(𝑑𝑂)4
 

𝑆𝐻

𝑆𝑆
= 1 −

(𝑑𝑖)4

(𝑑𝑂)4
= 1 − 𝑘4 = [1 − (0.5)4] 

𝑆𝐻

𝑆𝑆
= 0.9375 
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Ex. 8.7 A 45 mm diameter shaft is made of steel with yield strength of 400 MPa. A parallel key of 

size 14 mm wide and 9 mm thick made of steel with yield strength of 340 MPa is to be 

used. Find the required length of key, if the shaft is loaded to transmit the maximum 

permissible torque. Use maximum shear stress theory and assume a factor of safety of 2. 

Solution: Given Data: 

d = 45 mm;  

w = 14 mm;  

t = 9 mm; 

Given Data: 

for shaft, σyt = 400 MPa 

For Key, σyt = 340 MPa 

F.S. = 2 

To be Calculated: 

a) 𝑙 =? 

 

 Let l = Length of key. 

According to maximum shear stress theory, the maximum shear stress for the shaft, 

𝜏𝑚𝑎𝑥 =
𝜎𝑦𝑡

2 × 𝐹. 𝑆.
=

400

2 × 2
= 100 𝑁/𝑚𝑚2 

Also maximum shear stress for the key, 

𝜏𝑘 =
𝜎𝑦𝑡

2 × 𝐹. 𝑆.
=

340

2 × 2
= 85 𝑁/𝑚𝑚2 

Maximum torque transmitted by the shaft and key, 

𝑇 =
𝜋

16
× 𝜏𝑚𝑎𝑥 × 𝑑3 

𝑇 =
𝜋

16
× 100 × 453 = 1.8 × 106  𝑁. 𝑚𝑚 

Let us consider the failure of key due to shearing. We know that the maximum torque 

transmitted (T), 

                𝑇 = 𝑙 × 𝑤 × 𝜏𝑘 ×
𝑑

2
 

1.8 × 106 = 𝑙 × 14 × 85 ×
45

2
 

 𝑙 = 67.2 𝑚𝑚 

Now let us consider the failure of key due to crushing. We know that the maximum 

torque transmitted by the shaft and key (T), 

       𝑇 = 𝑙 ×
𝑡

2
× 𝜎𝑐𝑘 ×

𝑑

2
 

 1.8 × 106 = 𝑙 ×
9

2
×

340

2
×

45

2
                       (𝑇𝑎𝑐𝑘𝑖𝑛𝑔  𝜎𝑐𝑘 =

𝜎𝑦𝑡

𝐹. 𝑆.
 ) 

 𝑙 = 104.6 𝑚𝑚 

Taking the larger of the two values, we have 

𝒍 = 𝟏𝟎𝟒. 𝟔 ≈ 𝟏𝟎𝟓 𝒎𝒎 
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